lunes, 30 de noviembre de 2015

Representación gráfica de la parábola

Podemos construir una parábola a partir de estos puntos:

1. Vértice

Vértice
Por el vértice pasa el eje de simetría de la parábola.
La ecuación del eje de simetría es:
eje

2. Puntos de corte con el eje OX

En el eje de abscisas la segunda coordenada es cero, por lo que tendremos:
ax² + bx + c = 0
Resolviendo la ecuación podemos obtener:
Dos puntos de corte: (x1, 0) y (x2, 0) si b² − 4ac > 0
Un punto de corte: (x1, 0) si b² − 4ac = 0
Ningún punto de corte si b² − 4ac < 0

3. Punto de corte con el eje OY

En el eje de ordenadas la primera coordenada es cero, por lo que tendremos:
f(0) = a · 0² + b · 0 + c = c        (0,c)


Representar la función f(x) = x² − 4x + 3.

1. Vértice

xv = − (−4) / 2 = 2     yv= 2² − 4· 2 + 3 = −1       
 V(2, −1)

2. Puntos de corte con el eje OX

x² − 4x + 3 = 0
ecuación       
(3, 0)      (1, 0)

3. Punto de corte con el eje OY

(0, 3)
Gráfica
FUNCIONES TRIGONOMETRICAS: 

Función seno

f(x) = sen x

Dominio: Erre
Recorrido: [−1, 1]
Período: Propiedades
Continuidad: Continua en Propiedades
Impar: sen(−x) = −sen x
Función

Función coseno

f(x) = cos x

Función
Dominio: Erre
Recorrido: [−1, 1]
Período: Propiedades
Continuidad: Continua en Propiedades
Par: cos(−x) = cos x

Función tangente

f(x) = tg x

Función
Dominio: Propiedades
Recorrido: Erre
Continuidad: Continua en Propiedades
Período: Propiedades
Impar: tg(−x) = −tg x

Función cotangente

f(x) = cotg x

función
Dominio:Propiedades
Recorrido: Erre
Continuidad: Continua en Propiedades
Período: Propiedades
Impar: cotg(−x) = −cotg x

Función secante

f(x) = sec x

Función
Dominio: Propiedades
Recorrido: (− ∞, −1] Unión [1, ∞)
Período: Propiedades
Continuidad: Continua en Propiedades
Par: sec(−x) = sec x

Función cosecante

f(x) = cosec x

Función
Dominio: Propiedades
Recorrido: (− ∞, −1] Unión [1, ∞)
Período: Propiedades
Continuidad: Continua en Propiedades
Impar: cosec(−x) = −cosec x

No hay comentarios.:

Publicar un comentario